37 research outputs found

    Lagrangian formation pathways of moist anomalies in the trade-wind region during the dry season: two case studies from EUREC4A

    Get PDF
    Shallow clouds in the trade-wind region over the North Atlantic contribute substantially to the global radiative budget. In the vicinity of the Caribbean island of Barbados, they appear in different mesoscale organization patterns with distinct net cloud radiative effects (CREs). Cloud formation processes in this region are typically controlled by the prevailing large-scale subsidence. However, occasionally weather systems from remote origin cause significant disturbances. This study investigates the complex cloud-circulation interactions during the field campaign EUREC4A (Elucidate the Couplings Between Clouds, Convection and Circulation) from 16 January to 20 February 2020, using a combination of Eulerian and Lagrangian diagnostics. Based on observations and ERA5 reanalyses, we identify the relevant processes and characterize the formation pathways of two moist anomalies above the Barbados Cloud Observatory (BCO), one in the lower troposphere (~ 1000-650 hPa) and one in the middle troposphere (~ 650-300 hPa). These moist anomalies are associated with strongly negative CRE values and with contrasting long-range transport processes from the extratropics and the tropics, respectively. The first case study about the low-level moist anomaly is characterized by an unusually thick cloud layer, high precipitation totals, and a strongly negative CRE. The formation of the low-level moist anomaly is connected to an extratropical dry intrusion (EDI) that interacts with a trailing cold front. A quasi-climatological (2010-2020) analysis reveals that EDIs lead to different conditions at the BCO depending on how they interact with the associated trailing cold front. Based on this climatology, we discuss the relevance of the strong large-scale forcing by EDIs for the low-cloud patterns near the BCO and the related CRE. The second case study about the mid-tropospheric moist anomaly is associated with an extended and persistent mixed-phase shelf cloud and the lowest daily CRE value observed during the campaign. The formation of the mid-level moist anomaly is linked to "tropical mid-level detrainment"(TMD), which refers to detrainment from tropical deep convection near the melting layer. The quasi-climatological analysis shows that TMDs consistently lead to mid-tropospheric moist anomalies over the BCO and that the detrainment height controls the magnitude of the anomaly. However, no systematic relationship was found between the amplitude of this mid-tropospheric moist anomaly and the CRE at the BCO. This is most likely due to the modulation of the CRE by above and below lying clouds and the fact that we used daily mean CREs, thereby ignoring the impact of the timing of the synoptic anomaly with respect to the daily cycle. Overall, this study reveals the important impact of the long-range moisture transport, driven by dynamical processes either in the extratropics or the tropics, on the variability of the vertical structure of moisture and clouds, and on the resulting CRE in the North Atlantic winter trades

    The dichotomous structure of the warm conveyor belt

    Get PDF
    The warm conveyor belt (WCB) of an extratropical cyclone generally splits into two branches. One branch (WCB1) turns anticyclonically into the downstream upper-level tropospheric ridge, while the second branch (WCB2) wraps cyclonically around the cyclone centre. Here, the WCB split in a typical North Atlantic cold-season cyclone is analysed using two numerical models: the Met Office Unified Model and the COSMO model. The WCB flow is defined using off-line trajectory analysis. The two models represent the WCB split consistently. The split occurs early in the evolution of the WCB with WCB1 experiencing maximum ascent at lower latitudes and with higher moisture content than WCB2. WCB1 ascends abruptly along the cold front where the resolved ascent rates are greatest and there is also line convection. In contrast, WCB2 remains at lower levels for longer before undergoing saturated large-scale ascent over the system's warm front. The greater moisture in WCB1 inflow results in greater net potential temperature change from latent heat release, which determines the final isentropic level of each branch. WCB1 also exhibits lower outflow potential vorticity values than WCB2. Complementary diagnostics in the two models are utilised to study the influence of individual diabatic processes on the WCB. Total diabatic heating rates along the WCB branches are comparable in the two models with microphysical processes in the large-scale cloud schemes being the major contributor to this heating. However, the different convective parameterisation schemes used by the models cause significantly different contributions to the total heating. These results have implications for studies on the influence of the WCB outflow in Rossby wave evolution and breaking. Key aspects are the net potential temperature change and the isentropic level of the outflow which together will influence the relative mass going into each WCB branch and the associated negative PV anomalies at the tropopause-level flow

    Lagrangian matches between observations from aircraft, lidar and radar in a warm conveyor belt crossing orography

    Get PDF
    Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation and the amplification of upper-level ridges. This study presents a case study that involves aircraft, lidar and radar observations in a WCB ascending from western Europe towards the Baltic Sea during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) and T-NAWDEX-Falcon in October 2012, a preparatory campaign for the THORPEX North Atlantic Waveguide and Downstream Impact Experiment (T-NAWDEX). Trajectories were used to link different observations along the WCB, that is, to establish so-called Lagrangian matches between observations. To this aim, an ensemble of wind fields from the global analyses produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble of Data Assimilations (EDA) system were used, which allowed for a probabilistic quantification of the WCB occurrence and the Lagrangian matches. Despite severe air traffic limitations for performing research flights over Europe, the German Aerospace Center (DLR) Falcon successfully sampled WCB air masses during different phases of the WCB ascent. The WCB trajectories revealed measurements in two distinct WCB branches: one branch ascended from the eastern North Atlantic over southwestern France, while the other had its inflow in the western Mediterranean. Both branches passed across the Alps, and for both branches Lagrangian matches coincidentally occurred between lidar water vapour measurements in the inflow of the WCB south of the Alps, radar measurements during the ascent at the Alps and in situ aircraft measurements by Falcon in the WCB outflow north of the Alps. An airborne release experiment with an inert tracer could confirm the long pathway of the WCB from the inflow in the Mediterranean boundary layer to the outflow in the upper troposphere near the Baltic Sea several hours later. The comparison of observations and ensemble analyses reveals a moist bias in the analyses in parts of the WCB inflow but a good agreement of cloud water species in the WCB during ascent. In between these two observations, a precipitation radar measured strongly precipitating WCB air located directly above the melting layer while ascending at the southern slopes of the Alps. The trajectories illustrate the complexity of a continental and orographically influenced WCB, which leads to (i) WCB moisture sources from both the Atlantic and Mediterranean, (ii) different pathways of WCB ascent affected by orography, and (iii) locally steep WCB ascent with high radar reflectivity values that might result in enhanced precipitation where the WCB flows over the Alps. The linkage of observational data by ensemble-based WCB trajectory calculations, the confirmation of the WCB transport by an inert tracer and the model evaluation using the multi-platform observations are the central elements of this study and reveal important aspects of orographically modified WCBs.</p

    Lagrangian matches between observations from aircraft, lidar and radar in an orographic warm conveyor belt

    Get PDF
    Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation and the amplification of upper-level ridges. This study presents a case study that involves aircraft, lidar and radar observations in a WCB ascending from western Europe towards the Baltic Sea during the field experiments HyMeX and T-NAWDEX-Falcon in October 2012. Trajectories were used to link different observations along the WCB, that is to establish so-called Lagrangian matches between observations. To this aim, wind fields of the ECMWF ensemble data assimilation system were used, which allowed for a probabilistic quantification of the WCB occurrence and the Lagrangian matches. Despite severe air traffic limitations for performing research flights over Europe, the DLR Falcon successfully sampled WCB air masses during different phases of the WCB ascent. The WCB trajectories revealed measurements in two distinct WCB branches: one branch ascended from the eastern North Atlantic over southwestern France, while the other had its inflow in the western Mediterranean. Both branches passed across the Alps, and for both branches, Lagrangian matches coincidentally occurred between lidar water vapour measurements in the inflow of the WCB south of the Alps, radar measurements during the ascent at the Alps, and in situ aircraft measurements by Falcon in the WCB outflow north of the Alps. An airborne release experiment with an inert tracer could confirm the long pathway of the WCB from the inflow in the Mediterranean boundary layer to the outflow in the upper troposphere near the Baltic Sea several hours later. The comparison of observations and ensemble analyses reveals a moist bias in the analyses in parts of the WCB inflow but a good agreement of cloud water species in the WCB during ascent. In between these two observations, a precipitation radar measured strongly precipitating WCB air located directly above the melting layer while ascending at the southern slopes of the Alps. The trajectories illustrate the complexity of a continental and orographically influenced WCB, which leads to (i) WCB moisture sources from both the Atlantic and Mediterranean, (ii) different pathways of WCB ascent affected by orography, and (iii) locally steep WCB ascent with high radar reflectivity values that might result in enhanced precipitation where the WCB flows over the Alps. The linkage of observational data by ensemble-based WCB trajectory calculations and confirmed by an inert tracer, and the model evaluation using the multi-platform observations are the central elements of this study and reveal important aspects of orographically modified WCBs

    The North Atlantic Waveguide and Downstream Impact Experiment

    Get PDF
    The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum fĂŒr Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français InstrumentĂ©s pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe

    On the Shift of Glacier Equilibrium Line Altitude (ELA) under the Changing Climate

    No full text
    Presently available information on the glacier equilibrium line altitude (ELA) is being collected and examined. The historical course of the world's longest ELA series of 107 years at the Claridenfirn is reviewed together with climatic elements. Further, the changes in ELAs of 70 glaciers the world over are investigated, and a linear plane model for the speed of the ELA shift is proposed as a function of the changing rates of summer temperature and winter mass balance. The four glaciers in Europe, which diverge most from the plane, are investigated in detail. The cause of the divergence is likely due to be the change in solar global radiation. Although a precise quantification of the role of radiation is not possible at this stage for the entire world, the role of solar radiation is investigated for these glaciers. Globally viewed, ten, or 15% of the 70 investigated glaciers, are expected to lose their accumulation areas within the next ten years. Half of all studied glaciers will follow the same fate by the end of this century under the present climatic conditions. If climate change is accelerated, the disappearance of glaciers will occur sooner than presented in this study.ISSN:2073-444

    Climate on the equilibrium line altitudes of glaciers: theoretical background behind Ahlmann's P/T diagram

    No full text
    The climatic condition that prevails at a glacier equilibrium line altitude (ELA) is often parameterized in terms of summer air temperature (T) and annual precipitation (P). This simple parameterization was initially proposed by Hans W:son Ahlmann. The physical background of the relationship between P and T on the equilibrium line, however, has been left unexplained since Ahlmann first questioned the mathematical form of the relationship. This relationship can be explained when the thermal and hydrological processes of the ELA formation are investigated. The present authors studied the energy exchange processes that prevail on the ELA during the melt season. The inclusion of solar radiation brings Ahlmann's hypothesis closer to energy balance, and improves his P/T diagram. By comparing the observed fluxes from the polar through the mid-latitude to the equatorial glaciers, it was found that these glaciers in different climatic regions share important similarities at the ELA. Further, it was found that the classic P/T curve originally proposed by Ahlmann in the early 20th century is a concise expression of the conservation principle of energy and mass at the ELA of glaciers, and takes the form of a polynomial of the fourth order.ISSN:0022-1430ISSN:1727-565

    Extreme wet seasons – their definition and relationship with synoptic-scale weather systems

    No full text
    An extreme aggregation of precipitation on the seasonal timescale, leading to a so-called extreme wet season, can have substantial environmental and socio-economic impacts. This study has a twofold aim: first to identify and statistically characterize extreme wet seasons around the globe and second to elucidate their relationship with specific weather systems. Extreme wet seasons are defined independently at every grid point of ERA-Interim reanalyses as the consecutive 90 d period with the highest accumulated precipitation in the 40-year period of 1979–2018. In most continental regions, the extreme seasons occur during the warm months of the year, especially in the midlatitudes. Nevertheless, colder periods might be also relevant, especially in coastal areas. All identified extreme seasons are statistically characterized in terms of climatological anomalies of the number of wet days and of daily extreme events. Results show that daily extremes are decisive for the occurrence of extreme wet seasons in regions of frequent precipitation, e.g., in the tropics. This is in contrast to arid regions where wet seasons may occur only due to anomalously frequent wet days. In the subtropics and more precisely within the transitional zones between arid areas and regions of frequent precipitation, both an anomalously high occurrence of daily extremes and of wet days are related to the formation of extreme wet seasons. A novel method is introduced to define the spatial extent of regions affected by a particular extreme wet season and to relate extreme seasons to four objectively identified synoptic-scale weather systems, which are known to be associated with intense precipitation: cyclones, warm conveyor belts, tropical moisture exports and breaking Rossby waves. Cyclones and warm conveyor belts contribute particularly strongly to extreme wet seasons in most regions of the globe. But interlatitudinal influences are also shown to be important: tropical moisture exports, i.e., the poleward transport of tropical moisture, can contribute to extreme wet seasons in the midlatitudes, while breaking Rossby waves, i.e., the equatorward intrusion of stratospheric air, may decisively contribute to the formation of extreme wet seasons in the tropics. Three illustrative examples provide insight into the synergetic effects of the four identified weather systems on the formation of extreme wet seasons in the midlatitudes, the Arctic and the (sub)tropics.ISSN:2698-4016ISSN:2698-400
    corecore